

Vince Asbridge, Founder & President, SANBlaze

Haiyan Lin, Sr. Software Engineer, SANBlaze

Verification of ZNS

Authors

White Paper

Zoned Namespaces

Verification for SSD Drives

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 1

Table of Contents

List of Figures .. 2

1. Introduction .. 3

2. Understanding ZNS ... 3

2.1 Why ZNS for SSDs? .. 3

2.2 ZNS Model and State Machine ... 4

2.3 ZNS Commands ... 4

2.3.1 Zoned Admin Command Sets... 4

2.3.2 Zoned I/O Commands .. 5

3. ZNS Verification by SANBlaze.. 6

3.1 Zone Management/Append Examples with the SANBlaze Platform 6

3.1.1 Zone Management Receive ... 6

3.1.2 Zone Management Send .. 7

3.1.3 Zone Append .. 8

3.2 Multiple Threads I/O in ZNS Examples with SANBlaze Platform .. 9

Summary ... 11

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 2

List of Figures

Figure 1: Zoned Namespace 3
Figure 2: Zone State Machine 4
Figure 3: Scalability with Multiple Writers 5
Figure 4: Help Info for Zone Management Receive 6
Figure 5: Help Info for Zone Management Send 7
Figure 6: Help Info for Zone Append 8
Figure 7: Help Info for Start Test and Stop Test 9
Figure 8: Trace of Multiple Threads I/O in zoned namespace 10

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 3

1. Introduction

SANBlaze has announced the availability of ZNS (Zoned Namespace) verification that allows you to
quickly and effectively test and validate the ZNS implementation of your solid state drives (SSDs). This
white paper introduces ZNS and describes how to verify that your SSDs have implemented all ZNS
features correctly using the SANBlaze SBExpress test and validation system.

2. Understanding ZNS

NVMe™ Zoned Namespace (ZNS) is a technical proposal under standardization by the NVM Express™
organization. It divides the logical address space of a namespace into zones. Each zone provides a
Logical Block Address (LBA) range that must be written sequentially and if written again must be
explicitly reset. This operation principle allows created namespaces that expose the natural boundaries
of the device and provides offload management of internal mapping tables to the host.

2.1 Why ZNS for SSDs?

SSDs are intrinsically zoned devices due to flash characteristics. A page is the smallest area of the NAND
flash memory that supports a write operation and consists of all the memory cells on the same
WordLine. An erase block is the smallest area of the flash memory that can be erased in a single
operation. Page and block sizes differ per manufacturer and flash generation. For example, 19nm 64Gb
MLC flash contains 16KB page size and 4MB block size. 16KB page size corresponds to 16,384 bytes that
are dedicated for data and 1,280 bytes that are available for control and Error Correction Code (ECC)
information.

NAND flash technology has evolved from SLC (Single-Level Cell, one bit per cell) to MLC (Multi-Level Cell,
2 bits per cell), then to TLC (3 bits per cell) and the current QLC (4 bits per cell). SLC NAND provides
faster write speed and longer write endurance (around 30,000 – 50,000 Program/Erase Cycles) but is
more expensive. MLC NAND offers a larger capacity, twice the density of SLC but with less endurance
(around 3,000 Program/ Erase Cycles). TLC and QLC increase capacity significantly but at the cost of
much less endurance (maybe around 300 Program/Erase Cycles), lower performance, and the need for
more DRAM to map the higher capacity. DRAM is the highest cost after NAND in a typical SSD.

ZNS introduces a new type of NVMe drive that provides several benefits over traditional SSDs. It divides
one namespace into multiple zones and only allows sequential write in each zone.

Figure 1: Zoned Namespace

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 4

SSDs cooperate using distributed FTL for the sequential access and eliminate multiple layers of
indirection. No complex topology provisioning is needed because zones are logical. ZNS reduces write
amplification, improves internal data movement, improves wear reduction, improves latency outliers
and throughput, reduces DRAM in SSD (smaller L2P) and reduces the need for media over-provisioning.
With the zones aligned to the internal physical properties of the NAND flash, several inefficiencies in the
placement of data can be eliminated. In particular, the problem commonly known as the log-on-log
challenge is naturally solved.

2.2 ZNS Model and State Machine

The ZNS model is similar to ZBC (Zoned Block Commands) and ZAC (Zoned ATA Commands) for SMR
HDDs, but the interface is optimized for SSDs to align with media characteristics (i.e., aligned fixed zone
size to NAND block sizes, and aligned variable zone capacity to physical media sizes). There are 7 states
defined for ZNS as well: Empty, Full, Implicit Open, Explicit Open, Closed, Read Only and Offline. Valid
transitions between each state can be changed by the NVMe Write, Zone Management Command
(Open, Close, Finish, Reset) and Device Resets as shown in the zone state machine below.

Figure 2: Zone State Machine

2.3 ZNS Commands

ZNS commands include Zoned Admin Command Sets and Zoned I/O Commands.

2.3.1 Zoned Admin Command Sets

The NVMe – TP 4053 Zoned Namespaces 2020.03.19 – Final specification provides specific additions to
the ZNS Admin Command Set as follows:

• Identify Namespace Data Structure (TBD – specification not complete)

• Identify Controller Data Structure (TBD – specification not complete)

• Asynchronous Events Information

• Log page 0xBF

• Set Feature (Asynchronous Event Configuration)

• Sanitize

• Controller Architecture (Administrative Controller)

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 5

2.3.2 Zoned I/O Commands

The NVMe – TP 4053 Zoned Namespaces 2020.03.19 – Final specification provides specific commands
for the Zoned Namespaces Command Set as follows:

• Flush

• Write

• Read

• Write Uncorrectable

• Compare

• Write Zeroes

• Dataset Management

• Verify

• Reservation Register

• Reservation Report

• Reservation Acquire

• Reservation Release

• Copy

• Zone Management Send

• Zone Management Receive

• Zone Append

Most commands are defined in the NVMe specification v1.4 except the “Zone Management Send,”
“Zone Management Receive” and “Zone Append” which are new.

Each zone is allowed to sequentially write only. If a sequential write in one zone in an SSD has a Queue
Depth > 1 then it means multiple writes per zone, and it will involve significant lock contention and
affect write performance. The Benchmark below shows multiple writes to a zone has low scalability, and
one write per zone generates good performance. But write performance is improved by writing to
multiple zones. Using the “Zone Append” command that appends data to a zone with an implicit write
pointer (without defining the offset) improves performance significantly. The SSD returns an LBA where
data was written in the zone and it will allow a higher Queue Depth (no host serialization).

Figure 3: Scalability with Multiple Writers

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 6

3. ZNS Verification by SANBlaze

The SANBlaze engineering team has incorporated ZNS testing into its SBExpress platform, and we are
proud to be the industry’s first to provide ZNS testing and validation to our customers. SANBlaze
Application Support for ZNS includes Certified by SANBlaze pre-developed test cases that allow users to
start validating ZNS support and capability right out of the box. Test cases support the following
functionality:

• Support all Zoned Admin Command Sets and Zoned I/O Command Sets defined in the NVMe –
TP 4053 Zoned Namespaces 2020.03.19 – Final specification in our SBExpress GUI, command
line interface, XML API interface, and Python wrapped API interface for test automation.

• Customized Linux driver to handle ZNS state machine transition and sequential write
requirement in each zone.

• Support multiple threads I/O running in the zones of ZNS in parallel with high throughputs. Each
zone can be tested using write, read, compare, and append as needed. Each zone will be reset at
the start, and then later when finished at the end.

• Namespace management for ZNS.

• Negative testing through scripts to test all ZNS features.

3.1 Zone Management/Append Examples with the SANBlaze Platform

3.1.1 Zone Management Receive

Figure 4: Help Info for Zone Management Receive

>>> t108.zone_management_receive() # List all zones with default input arguments

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x0000000000003B98

 Zone_Descriptor_0:

 Zone_Type = 0x02

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 7

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000000

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000004000

 Write_Pointer = 0x0000000000004000

. . .

>>> t108.zone_management_receive(receive_action=0x10000) # Report zone structure in data buffer

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x000000000000003F

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000000

. . .

3.1.2 Zone Management Send

Figure 5: Help Info for Zone Management Send

>>> t108.zone_management_send() # open zone 0 with default input arguments

Command ZoneManagementSend passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

Command Completion Queue Status is decoded as follows:

 CommandSpecific = 0x00000000

 Reserved0 = 0x00000000

 SQ_Head_Pointer = 0x0004

 SQ_Identifier = 0x0001

 Command_Identifier = 0x07CB

 Status_Field:

 PhaseBit = 0x01

 StatusCode = 0x0000

 StatusCodeType = 0x00

 Reserved = 0x00

 MoreInformation = 0x00

 DoNotRetry = 0x00

>>> t108.zone_management_receive() # List all zones with default input arguments

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x0000000000003B98

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 8

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x30

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000000

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000004000

 Write_Pointer = 0x0000000000004000

. . .

3.1.3 Zone Append

Figure 6: Help Info for Zone Append

>>> t108.zone_append() # zone append LBA 0 in zone 0 with default input arguments

Zone append data pattern 0xa5 to starting LBA 0x0 with 0x1 LBAs

0000 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

. . .

Command Completion Queue Status is decoded as follows:

 CommandSpecific = 0x00000000

 Reserved0 = 0x00000000

 SQ_Head_Pointer = 0x0006

 SQ_Identifier = 0x0001

 Command_Identifier = 0x0704

 Status_Field:

 PhaseBit = 0x01

 StatusCode = 0x0000

 StatusCodeType = 0x00

 Reserved = 0x00

 MoreInformation = 0x00

 DoNotRetry = 0x00

>>> t108.zone_management_receive() # List all zones with default input arguments

Command ZoneManagementReceive passed on port 0 target 108 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x0000000000003B98

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x30

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 9

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x0000000000000001

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000003000

 Zone_Start_LBA = 0x0000000000004000

 Write_Pointer = 0x0000000000004000

. . .

3.2 Multiple Threads I/O in ZNS Examples with SANBlaze Platform

Figure 7: Help Info for Start Test and Stop Test

>>> t107.zone_management_receive(receive_action=0x10000) # Report zone structure in data buffer

Command ZoneManagementReceive passed on port 0 target 107 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x000000000000003F

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000000000

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 10

 Write_Pointer = 0x0000000000000000

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0x10

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000020000

 Write_Pointer = 0x0000000000020000

. . .

>>>t107.get_vlun_start_test(test_type='Compare',threads=4,blocks=64)#Start 4 threads Compare test

<result>

 <test>

 <status>0</status>

 <test_id>Compare_2</test_id>

 <index>1</index>

 </test>

</result>

>>> t107.zone_management_receive(receive_action=0x10000) # Report zone structure in data buffer

Command ZoneManagementReceive passed on port 0 target 107 in tester 192.168.100.111. Output is

decoded as follows:

 Num_Zones = 0x000000000000003F

 Zone_Descriptor_0:

 Zone_Type = 0x02

 Zone_State = 0xE0

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000000000

 Write_Pointer = 0x00000000FFFFFFFF

 Zone_Descriptor_1:

 Zone_Type = 0x02

 Zone_State = 0xE0

 Zone_Attributes = 0x00

 Zone_Capacity = 0x0000000000018000

 Zone_Start_LBA = 0x0000000000020000

 Write_Pointer = 0x00000000FFFFFFFF

. . .

>>> t107.get_vlun_stop_test(test_id='Compare_2') # Stop the 4 threads Compare test above

<result>

 <status>0</status>

</result>

The trace from the SANBlaze platform shows that the 4 threads are running as follows: Each thread is
running in one zone, so 4 threads are running in 4 zones. Once complete the first 4 zones begin running
on the next 4 zones until they are stopped by user or complete the full test.

Figure 8: Trace of Multiple Threads I/O in zoned namespace

©Copyright SANBlaze Technology, Inc. 2020. All Rights Reserved. Verification of ZNS White Paper 11

Summary

In summary, SANBlaze supports all of the Zoned Admin Command Sets and Zoned I/O Command Sets as
specified and defined in the latest spec (NVMe – TP 4053 Zoned Namespaces 2020.03.19 – Final).
SANBlaze provides written scripts that can be run right of the box in our SBExpress GUI, as well as run
through our command line interface, XML API interface, and Python wrapped API interface for test
automation. SANBlaze is proud to provide a high quality and simple way to test and validate ZNS for
your SSD drives.

